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A double-helix laminar dynamo
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It has recently been shown that laminar, pressure-driven flow of a conducting fluid in
a helical pipe can generate a dynamo. Geometrical constraints have hitherto required
a relatively small Reynolds number, and a much larger magnetic Reynolds number,
Rm. Here, a configuration with two interwoven helical pipes is considered which is
shown to drive a dynamo at a Reynolds number of a few hundred and Rm > 30.
Various computer animations of the dynamo are available with the online version of
the paper. It is found that hydrodynamic instabilities may inhibit the dynamo, but
may also be regularized by it. It is also shown that a dynamo pump is possible, with
flow down one pipe generating a field which drives flow in the second. Movies are
available with the online version of the paper.

1. Introduction
The ability of motion of a conducting fluid to generate and sustain a magnetic field

is important in astrophysical and geophysical contexts. On such length scales, not
only is the motion likely to have a complex turbulent structure, but also the magnetic
Reynolds number, Rm, is very high. Such dynamos typically rely on a turbulent
‘α-effect,’ wherein averages over small-scale fluctuations arguably lead to an extra
mean field term in the driving equations, e.g. Roberts & Soward (1992). A recent
introduction to the problem is given by Gilbert (2003). Dynamos on engineering
scales are also possible, and have been built in Riga and Karlsrühe as in Rädler &
Cēbers (2002). This paper investigates a geometry similar to the Karlsrühe dynamo,
which used fluted pipes to drive helical motion, which is considered advantageous for
dynamo action.

Recently, Zabielski & Mestel (2006) showed that laminar, pressure-driven flow in a
helical pipe is capable of sustaining dynamo action. For suitable pipe geometry, there
is a narrow range of hydrodynamic Reynolds number Re for which magnetic growth
appears. The critical value of the magnetic Reynolds number Rm for these flows was
about 103. Re had to be chosen so that the cross-pipe (secondary) flow consisted
of two circulating regions, one of which was too weak to destroy the dynamo. This
constraint only permitted dynamos at high magnetic Prandtl number, Rm/Re. As a
result, the dynamo was viscously dominated. Strong magnetic fields were created and
destroyed by the fluid motion with the nonlinear behaviour only weakly dependent
on Ohmic dissipation. The fields exhibited reversals, and were occasionally totally
quenched, before re-establishing themselves on a slow time scale. The calculations
assumed perfectly conducting walls, although similar behaviour was found with lower
external conductivity.

The single-pipe helical dynamo only exists for high Rm in a narrow range of
Re. In this paper an interwoven, two-pipe configuration is considered in which one
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Figure 1. The two-pipe system with z-axis to the left. Flow in each pipe is in opposite sense.

rectangular helical pipe alternates with another. The two pipes fit together so that
they exactly fill a cylindrical annulus as shown in figure 1. The flow passes down one
pipe and returns through the other. Significantly, the pipes are in electrical contact,
so that current can pass from one to the other. It is found that this configuration
drives a dynamo at higher Re and lower Rm, with kinematic growth rates larger by a
factor of 10.

The problem is formulated in § 2. The steady flow through the two-pipe system is
antisymmetric about the helical interface between the pipes. Solutions for the magnetic
field may be symmetric or antisymmetric (or neither). Calculation in § 3 shows that
the preferred solutions are symmetric and this symmetry is closely preserved into the
nonlinear regime. The region of (Re, Rm) space for which dynamo action occurs is
identified. Growth is found to occur for both Re >Rm and Re <Rm.

In § 4, the dynamo behaviour is shown to vary considerably with Re. For Re = 69,
the low critical value Rm =29.7 is found. As Rm is increased above this value the
field first equilibrates at a steady level before bifurcating to a periodic oscillation.†
As Rm increases further the solution loses periodicity. An active phase is encountered,
with comparable magnetic and kinetic energies. For larger Rm the high field energy
cannot be maintained, and it reduces dramatically. The field is not found to reverse,
in contrast to the cases considered in Zabielski & Mestel (2006).

At lower values of Re, much higher magnetic energy levels are attained, often
exceeding the kinetic energy. Furthermore, the magnetic energy appears to remain
large at high Rm, even though the dynamo is ‘slow.’†

At low to moderate values of Re, calculation shows that there is a unique steady
flow. However, at higher Re, the driving flow is prone to a hydrodynamic instability
of Görtler type on the outer wall. The resulting unsteady flow is less conducive to
dynamo action, which then occurs only in a finite interval of Rm. When a dynamo
does occur, it exerts a regularizing influence on the unsteady flow. The dynamo
window shrinks and vanishes as Re increases, so that a turbulent dynamo would
require a different mechanism. The competition between hydrodynamic and dynamo
instabilities is a new effect, as no other pressure-driven, laminar dynamo is known.
It is also shown that flow down one pipe is capable of driving flow down a separate
pipe by means of the induced dynamo action.

2. Formulation of the problem
Only helically symmetric fields are considered in this paper. While it is certainly

possible that the dynamo would not exhibit the helical symmetry of the geometry,
experience with the related Ponomarenko problem suggests the preferred dynamo
mode will be nearly symmetric (Gailitis & Freiberg 1977). In terms of cylindrical
polar coordinates (r, θ, z), a scalar function is helically symmetric if it depends only

† Animations of these cases are available with the online version of the paper.
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on r and φ = θ + εz, where ε is a constant. To be single-valued, the function must
also be 2π-periodic in φ and it is constant on helices with the same pitch, 2π/ε. The
symmetry direction is given by the vector

H = (ez − εreθ )/h
2 where h = (1 + ε2r2)1/2 (2.1)

and eθ and ez are the unit vectors in the θ- and z-directions. Thus a scalar field f is
helically symmetric if H · ∇f = 0. The vector H is a non-unit Beltrami field

∇ ∧ H = −2εH/h2, |hH | = 1. (2.2)

A detailed description of helical symmetry is given in Zabielski & Mestel (1998). It
spans the gulf between two-dimensionality (ε = 0) and axisymmetry (ε → ∞). This
paper concentrates on the case ε = 1 for the two rectangular pipes drawn in figure 1.
The pipes interlock to fill the entire annulus 0.5 <r < 1.5. The pipe boundaries are
φ = 0, ±π.

The helically symmetric velocity, u, and magnetic field, B, are both solenoidal and
are represented by two scalar functions

u = H ∧ ∇Ψ + vH and B = H ∧ ∇χ + B H . (2.3)

The corresponding vorticity ω= ∇ ∧ u and current density j = ∇ ∧ B then take the
form

ω = H ∧ ∇(−v) + ξ H, j = H ∧ ∇(−B) + γ H, (2.4)

where

ξ = LΨ − 2εv/h2 and γ = Lχ − 2εB/h2, (2.5)

with the elliptic operator L defined by L ≡ h2∇ · (h−2∇). Suitably non-dimen-
sionalized, u and B satisfy the Navier–Stokes equations

∂u
∂t

+ u · ∇u = −∇p + j ∧ B + R−1
e ∇2u, ∇ · u = 0 (2.6)

and the magnetic induction equation

∂ B
∂t

= ∇ ∧ (u ∧ B) + R−1
m ∇2 B, ∇ · B = 0, (2.7)

where Re and Rm are the hydrodynamic and magnetic Reynolds numbers, for non-
dimensionalization with respect to the driving pressure gradient and the pipe width.
The imposed pressure gradient is alternately up and down the pipes, so that the
pressure itself is not helically symmetric, but can be written in the non-dimensional
form

p = ∓z + p̂(r, φ) (2.8)

with a sign appropriate to the flow direction in the two pipes. The components
of equations (2.6)–(2.7) are given in Zabielski & Mestel (2005). A similar magnetic
field representation was derived by Lortz (1968) and Benton (1979). In component
form, it is readily seen that the equations for B and χ , which are respectively the
helical analogues of toroidal and poloidal fields, are linked because of the Beltrami
property (2.2) of the helical symmetry direction H . It is this ‘geometrical α-effect’
which permits a laminar helical dynamo, which by Cowling’s theorem is not possible
in the axisymmetric (ε → ∞) and the two-dimensional (ε = 0) limits.

Equations (2.6) and (2.7) determine the time evolution of the velocity and magnetic
fields. On the rigid pipe boundaries the velocity satisfies

u = 0 on r = 0.5, 1.5, φ = 0, ±π. (2.9)
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Perfectly conducting walls are assumed at r =0.5 and r = 1.5, so that

χ = 0,
∂B

∂r
= 0 on r = 0.5, 1.5. (2.10)

The interfaces between the pipes at φ =0, π are assumed to have the same conductivity
as the fluid so that χ and B vary smoothly in the φ-direction. The magnetic boundary
conditions are then 2π-periodicity in φ. Below, it is found that the field exhibits
symmetry about the φ-boundaries, in which case the periodicity constraints may be
replaced by the Neumann conditions

∂B

∂φ
= 0,

∂χ

∂φ
= 0 on φ = 0, π. (2.11)

A discussion of other magnetic boundary conditions is given in Zabielski & Mestel
(2005).

3. Numerical solutions
The Navier–Stokes and induction equations (2.6) and (2.7) are invariant with

respect to helical symmetry, and only helically symmetric solutions will be considered.
In addition, the equations are invariant with respect to the transformation

φ → −φ, v → −v, Ψ → −Ψ, H · ∇p → −H · ∇p. (3.1)

As the pipe cross-section is symmetric with respect to φ, it follows that reversing the
direction of the pressure gradient merely inverts the top and bottom of the pipe. Thus
the steady flow driven up one pipe and down the other has symmetry about the pipe
boundary φ = 0. It should be noted that this symmetry does not reverse all velocity
components: the down-pipe flow (v) is reversed, but the cross-pipe flow is symmetric
in φ. The magnetic field may exhibit the same symmetry; equally, as the Lorentz force
j ∧ B is quadratic it could be antisymmetric without disturbing the flow symmetry.
Thus as the system evolves in time there will be a solution for which both u and B
are symmetric about φ = 0 in the above sense and one where u is symmetric and B
is antisymmetric. The former case can be represented by solution over the reduced
domain 0 <φ < π with the Neumann conditions (2.11), and the latter by the Dirichlet
conditions of vanishing χ and B . It is found that the system prefers the symmetric
state.

Equations (2.6) and (2.7) are solved numerically using second-order, implicit time-
stepping with centred spatial differences as described in Zabielski & Mestel (2006).
The grid size is 1/200 in the r-direction and π/600 in the φ-direction. For Re = 69
the steady flow is shown in figure 2(a–c). The maximum value of v is about 5 in this
case, so that the effective Reynolds number is arguably a few hundred. Figures 1(a),
1(b) and 1(c) depict contours of Ψ , v and ξ . The inside of the pipe is on the left and
the pipe climbs up out of the page. The flow structure, with two secondary vortices
and nearly vertical v-contours resembles Dean flow at high Dean number (Berger,
Talbot & Yao 1983). As Re is increased (with no magnetic field), the steady flow
becomes unstable. Disturbances appear in the boundary layer on the outer wall which
at high Re intermittently erupt out of the layer. This instability of a boundary layer
on a curved wall is thought to be of Görtler type, as described by Hall & Horseman
(1991). The resulting unsteady flow is found to be less conducive to dynamo action,
but need not extinguish it.
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(a) (b) (c) (d) (e) ( f )

Figure 2. Steady flow in each pipe for Re =69 and the linearly growing magnetic field for
Rm = 512. (a–f ) Ψ, v, ξ , χ,B, γ . The inside of the helix is on the left, with r horizontal and φ
vertical. Note the strong dependence of the field on the shape of Ψ .
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Figure 3. The linear growth rate as a function of Rm for the flow of figure 2.

For the flow of figure 2, a dynamo is found for Rm > 30. Both the symmetric and
antisymmetric modes have positive growth rates, but the symmetric growth rate is
higher for all Rm and so is preferred in the time evolution. The kinematic eigenfunction
is drawn on figure 2(d–f ) for Rm = 83. The growing field is heavily influenced by the
shape of Ψ , especially for large Rm. The linear growth rate, λ, is plotted against R1/3

m

in figure 3. This is a ‘slow’ dynamo, since λ → 0 as Rm → ∞. In fact λ ∼ R−1/3
m as

Rm → ∞, and so the one-third power is an appropriate scaling for Rm.
It might be expected that symmetry would be broken during the nonlinear evolution.

However, numerical solution of the full nonlinear problem over the double-pipe
domain shows that the variation from symmetry is very small, certainly less than
1%, for all cases where the symmetric solution is either steady or time-periodic. A
similar result holds when the magnetic energy remains small. The main reason for
this is the no-slip condition satisfied by the velocity on φ =0. Although symmetry
is not imposed, this condition severely restricts the possible flow behaviour, and the
combined system prefers to remain almost symmetric.

When the symmetric solution exhibits chaotic time behaviour, however, the situation
is different. The occasional departures from symmetry, which are observed near energy
peaks, soon lead to large divergence between the symmetric and non-symmetric
solutions. Even though the variations from symmetry remain small for all time, the
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Figure 4. Variation between the solutions with and without imposed symmetry for Re = 69
and Rm =512. The chaotic time behaviour ensures that small divergences have long term effect.
The darker line is the symmetric solution.

divergence between solutions becomes marked, as can be seen from the energy traces
in figure 4.

From now on, both the velocity and field are constrained to be symmetric, as
suggested by the linear solution. The dynamo is allowed to evolve dynamically in
figures 5 and 6 for various values of Rm. Both the kinetic energy Ek(t) and the
magnetic energy Em(t) are shown, defined for a suitable pipe section V by

2Ek(t) =

∫
V

u · udV, 2Em(t) =

∫
V

B · BdV. (3.2)

For slightly supercritical Rm, the dynamo saturates in a steady state, with Em 	 Ek .
As Rm increases, Em/Ek at first increases. A periodic oscillation sets in at about
Rm =57, and continues past Rm = 125. A detailed animation of this oscillation is
available with the online version of the paper (animation 1). The negative contours
of u · j ∧ B illustrated in the animation indicate that the magnetic energy is generated
near the stagnation point of Ψ on the inner wall. The oscillation period is close to
the turnover time of the cross-pipe vortices. Intermittently, structures appear on the
outer wall which resemble the hydrodynamic instability found at higher Re.

As Rm continues to increase the periodicity is lost. The mean of Em increases
steadily until a sudden transition to a solution with low magnetic energy occurs.
For 3242 � Rm � 123, self-quenching, high-energy solutions are found, with the field
almost disappearing intermittently, before re-establishing itself on the kinematic time
scale. The quenching is perhaps a precursor to loss of stability in the high-energy
solution, since for Rm � 3375, only low-energy solutions are found, as shown in
figure 6. The flow is only slightly disturbed from the steady state, and an almost
periodic solution is recovered for high Rm. The oscillation mechanism differs from
that of lower Rm in that it involves structures being shed from a thin layer along the
separation line of Ψ rather than the behaviour on the outer wall.

4. Variation with Re

Dynamos are found in a range of hydrodynamic Reynolds number, Rmin
e <Re <

Rmax
e . Here Rmin

e is governed by the shape of the flow, in particular by the structure of
the cross-pipe component, Ψ . No dynamo action is found when Ψ consists of a single
circulatory region, as occurs at low Re (Zabielski & Mestel 1998). It is believed that
Rmin

e corresponds to the creation of a sizable second region, and that (weak) dynamo
action then occurs at very high Rm. The upper limit Rmax

e is related to hydrodynamic
instability.

As Re increases from Rmin
e up to a value Re = R0, a critical value Rc

m is found
such that a dynamo occurs in the semi-infinite range Rm >Rc

m. For Re >R0, the
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Figure 5. Energy traces Ek(t) (top) and Em(t) (bottom) for Re =69 and various Rm.

steady pipe flow is unstable. This instability first appears on the outer wall and
saturates as a periodic oscillation. While this oscillation has small amplitude it does
not prevent dynamo action for moderate Rm values. Indeed, Rc

m is slightly lower for
the time-periodic flow at Re = 83.5 than for the steady flow at Re = 69. However, for
large Rm, for which any growth rate would be small, even a weak hydrodynamic
oscillation is found to inhibit the dynamo. Thus for Re slightly greater than R0, there
is a finite window of dynamo action Rc

m <Rm <Rmax
m . As Re increases further, the

time-dependent part of the flow grows in magnitude and the dynamo window shrinks,
disappearing to a point at Re =Rmax

e , as shown in figure 7. If a dynamo does occur
for an unsteady flow it exerts a regularizing influence on the velocity. In figure 8 the
chaotic flow for Re 
 91 is rendered periodic by the dynamo.
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Figure 6. Ek(t) (left) and Em(t) (right) for Re = 69 and Rm = 153, 203. Here Ek � Em.
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Figure 7. The region of dynamo action is above the curve. The rightmost vertical dashed line
indicates the transition to unsteady driving flow. The unsteady flow can support a dynamo.
The left asymptote corresponds to where Ψ develops a discernible second vortex.
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Figure 8. Ek(t) for Re = 91 and Rm 
 39. The aperiodic flow is regularized by the dynamo.

It should not be forgotten that once the flow ceases to be steady there is some
indeterminacy in the problem. The flows in the two pipes are essentially time-periodic,
but the phase difference between these independent flows is arbitrary, determined by
noise in the initial condition. While the amplitude of the oscillation remains small,
this has only limited effect on the field generation and the field is almost symmetrical.
Indeed, the presence of the dynamo probably leads to phase locking between the two
periodic pipe flows, but this has not been investigated.

For high Re, the hydrodynamic instability, which is of Görtler type, being essentially
that of a boundary layer on a concave wall, appears to kill the dynamo. This is
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Figure 9. Ek and Em for Re = 27 and Rm =343, 8000. High magnetic energy is maintained.

unfortunate, as it suggests that the dynamo mechanism of this configuration will fail
for turbulent flows, which are to be expected for real liquid-metal flows.

Even when the steady flow is stable, it is curious that the level of magnetic energy
attained is much higher for the more dissipative cases of lower Re. For Re = 27, for
example, a periodic solution occurs at Rm = 343 for which Em sometimes exceeds Ek .
This is shown in figure 9 along with the aperiodic case at Rm = 8000 for which Em >Ek

always.† Physically, as the magnetic energy grows, the Lorentz force tries to alter the
flow into a shape less conducive for dynamo action. At higher Re this is successful
and the growth of Em is inhibited. At lower Re, however, viscous forces respond more
rapidly to the Lorentz force, re-establishing a flow pattern which generates magnetic
energy. The field generation can then be controlled only at high levels of Em when
Ohmic dissipation becomes significant, though still less than the viscous dissipation.

4.1. A dynamo pump

The fairly high levels of Em produced can be used to drive motion down an isolated
pipe. If it would also function for the higher values of Re and turbulent flows obtained
in practice, such a hermetically sealed system might be of use in a coolant system of a
nuclear reactor, c.f. Plunian, Marty & Alemany (1999). A pressure gradient is applied
down only one pipe for Re = 27 and Rm = 512. This is found to drive a dynamo in
the asymmetric two-pipe system. As the field grows the Lorentz force acts in both
pipes, saturating the dynamo action in the first and driving a net flow in the second.
For these values the mean flow in the second pipe is found to be about 4% of the
flow in the first pipe, and in the same direction. While the laminar flows described in
this paper do not apply to real liquid-metal pipe flows, there is no reason why any
attainable dynamo should not function as a pump in this manner.

5. Concluding remarks
It has been shown that fully nonlinear, laminar pressure-driven dynamos can exist in

the two-pipe configuration for a wide range of magnetic Prandtl numbers. Compared
to the single-pipe configuration of Zabielski & Mestel (2006), the two-pipe design is a
more powerful dynamo. It shows a greater tendency towards periodic behaviour and
is not prone to field reversals. The dynamo energetics differ markedly depending on
the relative time scales of eddy turnover, viscous and Ohmic diffusion. At the lower

† Animations of these cases are available with the online version of the paper (animations 2
and 3).
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range of Re the magnetic energy can exceed the kinetic energy, and remains large as
Rm increases, even though the dynamo is slow. For higher Re, the magnetic energy
remains smaller than the kinetic. As Rm increases a solution with very low Em appears
at which the dynamo saturates. As Re increases, the steady flow loses stability, and
there are complex interactions between the magnetic and hydrodynamic instabilities.
Once the flow becomes seriously unstable, the dynamo action in this configuration is
destroyed. For a liquid metal, the physical parameters guarantee that the flow would
be turbulent. It is perhaps worth reiterating that the laminar mechanisms studied in
this paper do not seem to apply to the turbulent flows obtained in practice (unless one
uses a constant ‘eddy viscosity’). As Sherlock Holmes observed, the case of a laminar
pressure-driven dynamo could be more than a two-pipe problem (Conan-Doyle 1891).

This work was partially supported by EPSRC grant GR/S87539, for which the
authors are grateful.
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